

Abstracts

3D Dyadic Green's Function for Radially Inhomogeneous Circular Ferrite Circulator

C.M. Krowne. "3D Dyadic Green's Function for Radially Inhomogeneous Circular Ferrite Circulator." 1996 MTT-S International Microwave Symposium Digest 96.1 (1996 Vol. I [MWSYM]): 121-124.

Here we develop a three dimensional (3D) dyadic recursive Green's function with elements G_{sv} over ij suitable for determining the electric field components ($E_{z/}/E_{r/}/E_{\phi/}$) and magnetic field components ($H_{z/}/H_{r/}/H_{\phi/}$) anywhere within a circular, planar (microstrip or stripline) circulator. All of the components are present, although the $E_{z/}$, $H_{r/}$, and $H_{\phi/}$ components may still be dominant as long as the thickness h of the substrate is small. The recursive nature of G_{sv} over ij is a reflection of the inhomogeneous region being broken up into one inner disk containing a singularity and N annuli, G_{sv} over $ij, (r, \Phi, z)$ is found for any arbitrary point (r, Φ, z) within the disk region and within any i th annulus. Specification of G_{sv} over ij , $i = E$ or H , $j = H$, $s = z$, $v = \Phi$ or z , at the circulator diameter $r = R$ leads to the determination of the circulator s-parameters. The ports have been separated into discretized ports with elements (subports) and continuous ports. It is shown how G_{zv} over ij (r, Φ, z) enables s-parameters to be found for three and six port ferrite circulators. Because of the z -variation present in the finite thickness model, TEM, TM, and TE modal decompositions are not allowed for the 3D analysis, and instead it is found that new coupled governing equations describe the field behavior in the circulator. The theory is readily acceptable to constructing a computer code for numerical evaluation of finite thickness devices. Also, symmetric port disposition and metallic losses are covered.

[Return to main document.](#)

Click on title for a complete paper.